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Abstract

By looking at the simple task of tossing a bean bag from hand to hand. we show how the macro
operator method breaks down when formula‘ing agent models that interact with an uncertain
external world. A macro operator encapsulates a plan to reach an objective. Qccasionally the
objective will be found to be unachievable, requiring the macro operator and its plan to he rejected.
Letting the macro operator interact with the external world does not. by itsell. change this situation.
but the fact that the results of the interaction are uncertain. and the agent’s knowledge incomplete,
does. The key idea is that the agent can’t positively determine if progress towards the objective
is being made in the external world. and thus errors will be made in rejecting a macro operator
that would succeed. We show that there are a number of methods by which the agent can recover
from such an operator rejection and continue toward the operator’s objective. If we make operator
rejection and recovery into a common mechanism, then the operators and the plans they represent
will be split by the interaction into a sequence of smaller operators cach doing a portion ol the
work toward the objective of the larger operator.

The models are described in terms of Soar and we assume the reader’s familiarity with both the
architecture [Laird and Rosenbloom. 1987] and the Problem Space Computational Model {Newell
et al.. 1991] in our discussions.
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1 Introduction

In this paper we examine an agent interacting with an uncertain external world and how this
interaction constrains a model of the agent. In particular. we look at agent models formulated
as problem spaces in the Problem Space (‘omputational Model (PSCM) [Newell ef al.. 1991] and
implemented in Soar [Laird and Rosenbloom. 1987, and we assume the reader is familiar with
these systems. In both the PSCM and Soar an objective (or goal) is a definition of some state of
both the model and the external world. and an operator is what causes movement towards some
objective. Each operator has its own objective. that hopefully is a step toward achieving some
larger objective. Given a particular operator. the amount of interaction it can do with the external
world depends on both the reliability of the external world in producing a response to a requested
action. and the speed of the external world in producing the response. This limit on the amount
of interaction would seem to iimit the size of the operator’s objective. what the operator is trving
to achieve. However, we will show that instead. an operator’s objective can be shared across many
operators each making some progress. In particular. given an objective that is too large. we will
show methods for automatically splitting the processing of the objective into a sequence of smaller
operators so that the objective is still achieved.

We start with the fact that actions in the external world take time. and models that request
actions of the world have to do something while the external world is producing a desired response.
('urrently. most models wait for a response or check that progress towards a response is being
made. Since a desired response is not always produced. a method of terminating the waiting has to
be available. The basis for this termination is a form of exhaustion. and the knowledge generated
from it can be overgeneral. applying in other situations when waiting would be more appropriate.
However., we will describe a range of methods that can recover from an inappropriate termination
with another operator that can reach the original ohjective.

The combination of termination possibly followed by recovery we call splitting. Splitting is a
run-time strategy for a model. and is an alternative to large operators that wait for achieving an
objective. Waiting still oecurs in systems that split the operator. However, the waiting no longer
occurs within the monolithic operator. but rather between the smaller split operators. This allows
work to proceed on other tasks while waiting. by simply picking operators for those tasks. This
type of multi-tasking occurs without the nndesirable task composition that occurs when picking the
operators for a second task within a large waiting operator. The downside of splitting is the extra
work done for recovery. Although a particular Soar or PSCM model might mix split and monolithic
operators to achieve some performance goal. we will show that the mechanisms for handhng splits
due to failure of the external world producing a desired response must exist. Some method of
recovery from overgeneral terminations must exist as well,

The application of an operator is considered complete when the aperator’s objectives have
been achieved. Throughout this paper. a fanatical model ol PSCM and Soar operator application is
assnmed. This means that once a PSCM or Soar operator is selected. the completion of the operator
will not be inhibited bv the architecture of either the PSCN or Soar. This is our interpretation of
the definition of a 'SCM operator application as “an effective procedure for a function™ [Newell «f
al.. 1991].

The fanatical completion assnmption is why some form of learning operator termmations and
recovery from over-general operator terminations most exist in PSCNM and Soar models. When the
achiovement of an objective is known to he impossible. then the operator attemptine 1o achieve
that objective must be terminated. This termination redefines the abjective ol the operator o hat
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not violate the fanatical completion assumption. However, if a mistake is made in applying the
learned termination knowledge, then it must be possible to achieve the objective even after the
operator is terminated or the fanatical completion assumption will be violated. This is why some
method of recovery is required.

In the rest of the paper we describe how interacting with the external world acts as a force
for splitting PSCM and Soar operators into smaller operators. We start by looking at how Soar’s
knowledge compilation mechanism can cause operators to split in Section 2. Since knowledge
compilation is within the architecture, these splits occur in a model without the Soar agent doing
any deliberate processing to invoke a split. Why this occurs and how to recover in these situations
is the major point of the discussion. In Section 3 we discuss the deliberate splitting of operators.
and the implications deliberate splitting has for recovery. In general. deliberate splitting removes
more information than architectural splitting. making some forms of recovery more diffienlt. The
last topic. described in Section 1. involves PSC'M models that are doing multiple tasks and include
a goal of high utilization of the cognitive resource. Making the PSCM model’s use of the cognitive
resource more efficient means that. whenever possible. work on one of possibly multiple tasks is
being done. If a task’s progress depends on some external world response. then rather than wait
for that response a different task should be worked on. We discuss how splitting helps achieve this
goal. and also discuss other ways to handle multiple tasks and their relation to splitting. Finally.
Section 5 provides a discussion of how these topics fit together and into the general PSCM and
Soar picture.

2 Architectural splitting of operators in Soar

Soar is an implementation language for PSCM models. However. Soar onlv approximates some
PSCM functionality. in particular PSCM learning. PSCM learning occurs when an impasse occurs
in a problem space. the upper problem space. and another problem space. the lowdr problem space
provides the knowledge that resolves the impasse. Qur simple model of PSCM learning is: Lower
problem space knowledge is translated into a useful immediately applicable form for the upper
problem space. This translation is assumed to be perfect. However. because the definition of
PSCM knowledge is too vague. PSCM learning is also not well specthied. Thus Soar is left with
attempting to implement perfect PSCM learning without any detailed guidance from the PSCNL
Soar’s learning mechanism. chunking, fails 10 be perfect in certain cases. This section describes the
offects of this learning failure on Soar models. and how Soar models can recover from such a failure,

Chunking fails when the working memory information in the upper problem space changes while
the lower problem space is resolving the impasse. In particular. chunking assumes that when a lower
problem space decision is based on working memory information in the upper problem space. either
that upper problem space information stays constant, or the results of the decision are not nsed to
construet a chunk. We will call a situation where a lower problem space has made a decision based
on knowledge in the upper problem space and that information has changed temporally inconsistent.
Temporally inconsistent sitnations can arise ondy if the persistenec of adecision exceeds the original
reasons that supported the decision. .\ chunk, created from a temporally inconsistent sitnation is
called. a non-eontemporancous chunk becanse all the working memory information in the upper
problem space used to construct the chunk is not present at the time the chunk was constructed.

Non-contemporaneous chunks are a problem because they may not apply in the desired sitna-
tHons, thus causing an impasse to occur again. .\ chunk’s conditions are formed from the working
memory information that led to its creation. By definition, the temporally inconsistent working
memory information is not available in the npper problem problem space when the chunk is created.
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Thus. the chunk cannot apply to the exact information that created it. [t can apply to similar
information if it is available. However, non-contemporaneous chunks might never apply. and thus
no knowledge transfer occurs. As an example. we later show a non-contemporaneous chunk as-
sociated with catching a bean bag where the bean bag has to be in the left hand to be caught
by the right hand. This chunk will never apply. Since persistence is required for a temporally
inconsistent situation to exist and persistence is an attribute of operator application. most non-
contemporaneous chunks occur in learning operator application knowledge. The failure to apply
during operator application usually causes some chain of data dependent chunks to also fail. This
failure splits the learned operator application knowledge into two components: those that can apply
before the non-contemporaneous chunk and those that cannot applv. The non-application of this
chain of chunks can cause an impasse to occur again. The method of recovering from such splits
is to restore the context of the problem solving so that the operators that originally applied in the
impasse will apply again. The details of this process are the main subject of this section.

One important fact to note before we continue is that *he situations that produce non-contemporanecous
chunks are unavoidable when interacting with a dvnamic external world. Persistence is required for
temporally inconsistent situations to exist. and Soar operators show such persistence. The picking
of an operator in the lower problem space can depend upon external world objects accessed via
the upper problem space. Since the external world can change these upper problem space objects
at any time. and the operator persists and can be tested after these changes occurred. we can’t
eliminate all the situations that produce chunks. A\lso. since the external world is changing the
reasons supporting the operator’s initial proposal. we can’t in general predict when temporally
inconsistent situations will occur. We can change the Soar architecture 1o modily the definition of
persistence so temporal inconsistencies do not occur. This is called S-support {Laird and Huffman.
1992} and how it affects the topic of splitting is described in Section 2.1 However. we will argue
that S-support by itself doesn’t change the picture. it is just a different mechanism for enforcing the
current paradigm. It is an eager method that detects temporal inconsistencies forcing the nser to
consider them when they occur. Non contemporaneous chunks turns out to be a lazy method that
forces the user to handle temporal inconsisteacies when the agent attenipts to use the inapplicable
learned knowledge.

2.1 Cyclic toss task

We will discuss these issues throagh the example task of tossing a bean bag from one hand 1o
the other and back. a cvelie toss. In solving this task. we will use the following three operators:
cvclic-toss. toss, and catch. A short deseription ol these operators s shown in Figure | The
definition of the cvclic-toss operator in Figure | doesn™t include the knowledge of how to get tie
bean bag from one hand to the other it only has the knowledge 1o note that the intermediate state
is achieved. When we describe the execntion of the evelic 1oss task, we will show the eyvelie-toss
operator learning the other knowledge required to achieve its objective.

In Figure 1. we use the terms preconditions and objoctive to distingnish portions ol the condi-
tions of the productions that implement the operator. Preconditions are a common planning term
[Fikes and Nilsson. 1971]. and we are nsing it in exactly the same manner as the planning literature,
Preconditions are differentiated from the proposal conditions lor an operator, because an operator’s
proposal conditions state that this operator is applicable to the problem at hand. and the precon-
ditions state that this operator can apply. The objective is more closely associated with the desiced
information usuwally pnt on the Soar goal than the actual Soar goal. The name objective was picked
1o avoid confusion with the Soar use of the word goal. Separating the Soar coal from the objective
allows the objective’s persistence to differ from the Soar eoal’s architecturatly defined persistenee,



Operator cyclic-toss <object>
Proposal -

Problem space is Juggling

<object> is jugglable

The location of <object> is in
<hand>

<other-hand> is a hand

<other-hand> is not <hand>.

Application -
If The location of <obhject> is in
<other-hand>

Then The intermediate state is
noted on the objective

Objective - Toss-twice

The location of <object> is in
<hand>
The intermediate state is noted.

Operator toss <object> from
<hand>

Proposal -

Problem space is Tussing

<object> is jugglable

The location of <objeet> s in
<any-hand>

<any-hand> is a hand

<uother-hand> is a hand

<ather-hand> is not <hand>

Preconditions -

The location of <object> isin
<hand>

Application -

If The name of <hand> is right
Then 'r()ss-l'ighl <ul)jm'l> 1o

Operator catch <abject> with
<hand>

Praposal -

Problem space is Tossing

<object> is jugglable

The status of <object> is moving
toward <hand >

Preconditions -

Fhe location of the <abject > is
not in <hawnd>.
I'he location of the <object > is
close-to <hand >

Application -

If The name of <hand> is right
Then Catch-right <object s
If The name of <hand> is left

<other-hand>
If The name of <hand> is left
Then Toss-left <object> to
<other-hand >

Then Cateh-left <u|)j4'<'l >
Objective - Catch-with-hand

The location of the <object> is in
L. . <hand>
Objective - Throw-to-ather-hand The status of <object> is held
The location of the <ubject> is

not in <hand>.
The status of <object> is moving

toward <other-hand>

Prefer the hand that has the object  Implementation Jugghng cousists of Tossing

Rule - Rule -

If An lmpasse occurred for an operator doing a task in the
juggling problem space
and all the preconditions for the operator are (rue
Then Try the Tossing problem space.

If Two Toss operators are
possible one for each hand

Then prefer the operator for the
hand that has the bean bag

Figure 1: Knowledge for cvelic toss task

To achieve this persistence. objectives are recorded on the state and can be shared. One major
issue with the recording of objectives on the state is the removal of these objectives. Removal can
be done with specialized productions that recognize when an objective has heen achioved and then
remove the achieved objective. These removal productions are not shown.

We have left some knowledge out of Figure | because it is not required for our discussion.
The key piece of knowledge left out is the operator subgoaling knowledge of how objectives of
one operator become the desired ohjectives for other operators. We also assume perfect action
execution in this section. Thus the Toss action requests reliably toss and the Cateh action requests
refiably catch. We relax this assumption in Section 3. The other details of the knowledge shown
in Figure | will be explained when we describe the execution of the cvelic toss task.

2.2 Task Execution

Figure 2 shows the execution of the knowledge in Figure 1 along with some subgoaling and conflict
resolition knowledge. We will use it as an example of learning an operator application. The top
part of Figure 2 consists of several snapshots of the model’s state across time. Vhe bottam part
ol Figure 2 describes the problem solving that the agent does 1o achieve the evelic-toss operator.

with each step marked with a letter in a cirele. As shown in the evelie-toss operator in Figure |,




Initial State Intermediate State-1  Intermediate State-2 Intermediate State-3 Final (Goal) State

Problem Space
(name of task)
Select: Cyclic-Toss Apply: Cyclic-Toss tpartial)

Juggling Right Hand Note Intermedate State

Impasse
© @ ® ® ©@ O © ® O )

ng Select: Toss Apply: Toss Select: Cach  Apply: Caich Select: Toss Apply: Toss Select: Cach Apply: Cach Task
Right Hund  Request: Left Hund Request: Left Hand Request: Right Hund  Request Termination:
Toss-nght Catch-lett Toss-felt Catch-night Success
Time

Figure 2: Execution of cvclic toss task

the agent initially knows that an intermediate state (where the bean bag is in the nou-initial hand)
has to occur and be noted. But the agent doesn’t know any more of the details of how to do a
cvclic toss. Thus. once the cyclic-toss operator is selected @ an impasse occurs. The problem space
chosen to resolve this impasse is the Tossing problem space because of Figure 1's rule that Juggling
is implemented by Tossing ©. In this problem space. two toss operators are proposed: to toss from
the right hand and to toss from the left hand. The toss .perator for the right hand is selected O,
because Figure 1's “prefer” knowledge prefers the hand that has the bean bag. The toss operator
applies. requesting the bean bag be tossed to the left hand ®. Even before the bean bag gets to the
left hand the catch operator is selected as appropriate for catching the bean bag in the left hand ¢
Once the bean bag is caught ©). the original cyclic-toss operator notes the intermediate state Q. and
again we have two toss operators proposed. The toss for the left hand is selected (D and applies (0
Again the toss enables the catch operator to be proposed. and it is selected a9 and when the bean
bag reaches the right hand it applies @. The tossing task is now noted as being achioved hecanse all
the objectives of the cyvclic-toss operator have now been achioved ad. The knowledge that describes
this implementation of the cyclic-toss operator (do toss from right. then toss from left) is added to
the Juggling problem space so that in similar applications ol the cvelic-toss operator an impasse
will not occur.

Implementation Problems

In the bean bag tossing problem of Figure 2 we selected the tosses by nsing, Figuee 15 “prefer”
knowledge. If that knowledge was removed from the svstem. then some method would have to be
nsed to pick between the toss (right) and toss (left) operators at the two decision points. Figure 3
shows what happens when the toss (left) operator is picked first. perliaps because means-ends
analvsis was used and the toss (left) operator resolves the last step in achieving the evelie-toss,




Initial State Intermediate State-1 Intermediate State-2 Intermediate State-3 Final (Goal) State
Problem Space
{name of task)
Select: Cyclic-Toss @ Apply: Cychic-Toss tpartad)
@Juggling ® Right Hand Note Intermediate State
e @ ® @ ® ©
© Tossing Select: Toss Apply: Toms Select: Cuch Apply:Cach  Task-termination:
Left Hand Request Right Hand Request Success
Tuss-lett Catch-nght

@mwm 7O © ©® © O

Select: Toss  Apply: Toss  Select: Cach  Apply: Cuch  Task-termination:

Right Hand Request: Lett Hand Request Success
Toss-nght Catch-lett
Time

Figure 3: Creation of a non-contemporaneous chunk

The problem solving in Figure 3 follows that of Figure 2. but at @ the toss (left) operator is
picked first. Note that the toss (left) operator has a precondition that the bean bag is in the left
hand. This precondition must be true hefore it can apply. In Figure 3 this precondition causes
an impasse and operator subgoaling knowledge selects the Tossing problem space to resolve the
impasse with the goal being to get the bean bag to the left hand &. The toss (right) operator is
selected () and applies © in this lowest problem space. Since the bean bag is now moving. the catch
operator becomes selectable. and is selected @. Sometime later, the bean bag is close enongh to
the hand for the catch operator to apply (. The catch operator makes the bean bag be in the left
hand resolving the task for the lowest problem space @, and allowing both the eyvelic-toss operator
to note the intermediate state Q), and the toss (left) operator to apply . \s before. the bean bag
is caught by the right hand. the Tossing task is resolved @ and the cvelic-toss is learned.

To an external observer, the scenarios in Figure 2 and Figure 3 are the same, and the knowledge
that resolves the cyclic-toss operator is simply to first toss from the right hand and then toss from the
feft. Unfortunately, the chunk created by Soar for the evelie-toss Soar operator from the application
of the catch (left) Soar operator in Figure 3 is inapplicable. The creation of the toss (left) operator
depends upon the bean bag being held in a hand. see Figure [0 If the bean bag was not bheing
held. then perhaps. a different operator wonld be proposed to achieve the state of holding the bean
bag. Testing that the bean bag is being held makes the toss (left) operator in Figure 3 dependem
upon the hean bag being in some hand. When the bean bag is tossed from the right hand. this
dependency still exists, but it is no longer true. We have a temporally incounsistent situation with
regards to the toss (left) operator. So when the application of the catch (left) operator ocenrs,
another chunk is built that incorporates the cateh (left) action request and the dependeney that

6




If The problem space is Juggling
the operator is cvclic-toss
the <object> is jugglable
the <object> is moving toward the <hand>
the location of the <object> is not in <hand>
the location of the <object> is in <any-hand>
<any-hand> is a hand
the location of the <object> is close-to <hand>
the name of the <hand> is left

Then catch-left <object>

Figure 4: Example of non-contemporaneous knowledge

If The problem space is Juggling
the operator is cyclic-toss
the <object> is jugglable
the <object> is moving toward the <hand>
the location of the <object> is not in <hand>
the location of the <object> is close-to <hand>
the name of the <hand> is left

Then catch-left <object>

Figure 5: Example of useful knowledge created on second attempt.

the bean bag is in some hand. Thus the catch (left) is dependent both upon the bean bag initially
being held by a hand. from tne toss (left) operator creation. and being moving and close to the left
hand at the time of the catch from the catch’s preconditions. However, the temporal aspect of this
scenario is lost. The chunk generated for the catch. as shown in Figure -1, requires that the bean
bag be both moving and in a different hand than the left (catching) hand. This is hardly a good
situation for caiching a tossed bean bag.

The chunk in Figure - is an instance of a non-contc mporancous chunk (see [Laird and Huffman.
1992]). It is splitting the cvclic-toss operator into the two portions. The first portion execntes
before the chunk doesn’t apply. making the first toss of the hean bag. The second can’t apply
because the bean bag is not canght.

The main issue here is that the cyclic-toss operator should not care whether the method shown
in Figure 2 or in Figure 3 was used for solving the cvelic toss problemi. The chunk shown in Figure |
will not apply at the appropriate time because the conditions will not matel any jngeling situation.
Thus the knowledge transfer for the cyclic-toss operator failed to generate effective knowledge. This
failure to apply causes the cyelic-toss operator in one problem solving scenario. Figure 3. to not bhe
as effective as in the other. Figure 2. even though no a priori reason exists to prefer one over the
other.

Recovery from split

The situation in Fignre 3 is not as bad as it might seem because the proper knowledpe s
built when the cyclic toss is next attempted. This happens because the evelic-toss operator was
implemented with simpler Soar operators that worked entirely based on the situation in the top
problem space. When the cyclic-toss operator is selected some time in the futnre, and the bean bae
is in the right hand. the first chunk corresponding to throwing the bhean bag from the right hand
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will apply. sending the bean bag to the left hand. The second chunk for catching the bean hag
in the left hand can’t apply because it requires the bean bag to be in the right hand and it isn'r.
Thus. an impasse will occur because the cvelic-toss hasn't completed. In resolving this impasse. the
Tossing problem space is picked again. Since the current situation matches the proposal conditions
for the catch operator. it will be proposed and applied. catching the bean bag. This time. however,
the catching request creates the useful chunk. shown in Figure 5. for the Soar cvelie-toss operator,
Thus. in this case Soar learns the appropriate knowfedee over multiple tries rather than simmply
from the initial learning sitnation,

The strategy used in Figure 2 and VFignre 3 for creating Soar macro operators snch as evelie-toss
is very powerful. If the simple Soar operators that define the Soar macro operators either always
work in the Soar state that the Soar macro operator is working i, or can alwavs recreate any
local state information. then the program can alwavs recover [rom non-contemporaneons chunks.
This is important because it ensures an effective implementation of the PSCNM operator. even il the
problem solving in Soar is more complex than in the PSCM model.

Figure 6 shows the iterative generation of increasingly seneral chunks in a more complicated
task of a robot pushing a box (described further in Section 3. The X axis of Fieure 6 counts the
operators required to do the task in each trial. The Y axis is the depth of the coal stack that existed
when the operator was proposed. Four consecutive learning trials on the <ame problem are shown,
The problem solving in the first trial creates some non-contermporancous chunks. Uhese elinnks do
not fire in the second trial. causing impasses to resolve the missing knowledee,  The new chunks
from the second trial are useful up to the point that they. too, hecome non-coutemporancons. This
process repeats itself until we have usefnl immediate knowledee available at the end of 1trial 3 and
do not need to impasse in trial 1.

Failing to recover

When a non-contemporanecous chunk fails to applyv. any other knowledes dependent on its actions
will also fail to apply. Recovering is not necessarily as casv as deseribed above.  The ditlicult

sitnations oceur in opetator application. when a portion of the operator applies, thus making sonme




Initial State Intermediate State-1  Intermediate Stute-2 Intermediate State-3 Final (Goual) State

Problem Space
(name of task)
Select: Cyclic-Toss @ Apply: Cychic-Toss tpartials
@Juggling ® Right Hand Note Intermedrate State

;Impaue © ® © ®

©Throwing Select: Toss-Left-Catch-Right Apply: Apply:  Task-termination:
Request: Reguest Success
cquest: bt
Toss-lett ach-ng
Impasse
©® Throwing % ® © @ O
Select: Apply: Apply: Task-termination:
Toss-nght-Catch-left Request: Request: Success
Toss-night Catch-lett
Time

Figure 7: Cyclic toss with svmmetric toss-catch operators

previous portion of the operator inapplicable. If the now inapplicable portion of the operator is
required for recovery then a problem exists. We can create such a situation by modifving onr
example, so that instead of having toss and catch operators in the Tossing problem space. we try
to implement the cyclic-toss operator with the symmetric toss-left-catch-right and toss-right-catch-
left operators in the Throwing problem space. We can assume that the Throwing problem space
operators were learned from the Tossing problem space operators some time in the past. Thus we
learned how to throw from hand to hand before attempting the cvelic toss. Unfortunately, recovery
with knowledge of this form only becomes possible if we expand our current methods.

We will explain why recovery is difficult by going through our same cvelie toss example. We
are assuming that the proposal conditions of these complex toss and catch operators are the same
as those for the toss operators of Figure L. and that the cateh action occurs when the cateh
preconditions are true. Figure 7 shows the cvelic toss being done with these operators assuming
the left hand is tried first. When the left hand is tried ®. the same impasse from Figure 3 of an
nnresolved precondition occurs and leads to the toss-right-catch-left operator being picked @ in
a new Throwing problem space. This operator applies tossing the bean bag to the left hand @
and catching it in the left hand @. Once caught. the bottom throwing task is terminated Q. the
intermediate state is noted (), and the toss-left-cateh-right operator can now start applving. It
requests the toss-left action ® and then the cateh-right action @. Again when the bean bag is back
in the right hand, the task terminates . The learning is very similar to that in {figure 3. and a
non-contemporaneous chunk is created for the cvelic-toss operator for the cateh-left action. This
chunk looks exactly like our previous chunk in Figure 1.




On the next attempt at a cyclic toss that starts from the right hand, the first chunk for the
cyclic-toss operator applies; tossing the bean bag from the right hand. Since the second chunk can’t
apply. an impasse occurs. The Throwing problem space is picked, but no operators are proposed.
Both toss-left-catch-right and toss-right-catch-left operators are only proposed if the bean bag is in
a hand. Since the bean bag is in the air. no operators are proposed. This results in a new impasse.
but we have no knowledge relating to the handling of this impasse. so the bean bag falls 1o the
floor.

Not being able to independently catch the flving bean bag in the Throwing problem space is the
root problem in this example. The knowledge about catching in the left hand was available in the
Throwing problem space. it was just embedded in the wrong operator. Even if the Tossing problem
space with our original toss and catch operators was available to resolve the impasse, we could not
have recovered, because the issue to be resolved by this impasse is that no operator is available in
the throwing problem space. To recover, somehow we have to extract the catching knowledge and
make it available in the Throwing problem space in the form of a new operator.

2.3 Generalizing Recovery Methods

This section describes how to write Soar models that exhibit the recovery capability we saw
in the previous section. while avoiding the problems. In particular. it is concerned with non-
contemporaneous chunks that arise out of interaction with the external world. Non-countemporaneons
chunks can also be created by strictly internal problem solving. and the same methods help in these
situations, especially if the problem stems from planning and nsing knowledee about the external
world responses.

Recovery consists of two parts: reconstructing the contert of the problem solving up to the
point it was disrupted (i.e. when the non-contemporaneous chunk didn’t fire) and continuing the
problem solving after the disruption. When the learned application of the cyelic-toss operator
was disrupted by the non-application of the non-contemporaneous chunk in Section 2.2°s positive
example, the problem solving continued using the original problem solving knowledge. In gen-
eral. non-contemporaneous chuitks disrupt the immediate use of operator application knowledge.
The disruption causes an impasse that can be nsed to learn knowledge that can replace the non-
contemporaneous chunk. if the correct context can be created. In Section 2.2°% negative example,
the context could not be created that would allow the cateh portion of the toss-right-catch-left
operator to apply. The context reconstruction part ol recovery has a continnum of solutions that
range from doing nothing, because all the state between both problem spaces is shared. 1o com-
pletely reconstructing the context in the lower problem space. In the lirst case the problem solving,
in the lower problem space duplicates all its results in the upper problem space. Fhos, when the
non-contemporaneous chunk refuses to fire we have precisely the context needed 1o proceed. In
the second case we keep no intermediate results but instead have a method for reconstructing the
problem solving whenever it is needed. We now describe two example systems that can be classified
as different points along this continuum.

Sharing state

The cyclic-toss operator of Figure 3 is an example of sharing the major problem solving results of
the problem solving in a lower problem space with the upper problem space. X shared portion of
the state holds the problem solving context. In Figure 3 the shared problem solving context is the
location and status of the bean bag, and the objective of the evelic-toss operator. This example only
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requires the perceptually determined location and status of the bean bag. When the impasse occurs
in the cyclic-toss operator the second time, the bean bag's status of “moving™ is what enables the
catch operator’s selection and thus the learning of the correct knowledge. In Figure 7 the problem
solving context for each of the catch actions includes the fact that the associated toss was done.
Thus in this case, all the context is not shared, the fact that the associated toss was done is “known”
only in the sub-context. Thus, when the impasse occurs after the toss. the svstem can’t continue
because it can't recreate this specific context for the catch action.

In Figure 3 the objective does not need to be shared, to solve this particular problem. The
sharing is done for demonstrative purposes, since sharing of the objective is required in more
complex problems. In some more complicated systems objectives are linked to implement a stack
mechanism to focus the effort.

Replanning

At the other end of the spectrum. the reconstruction process can re-derive the context information
as needed. Consider Mitchell's robot. that has the multiple goals of finding a cup and keeping itself
charged {Mitchell, 1990]. The robot determines an action by planning and then requests the action
forgetting all the planning knowledge involved in picking that particular action. If Mitchell’s robot
didn’t learn. it would completely replan for each action request. Mitchell makes this replanning
efficient by having the robot cache the planning results as stimulus-response rules. The conditions of
the rules are generated through an explanation-based generalization of the original planning. Thus.
the next time a similar situation arises. the cached rule will fire providing the action request and
make replanning unnecessary. What Mitchell does not do is cache intermediate planning results.
only the final ones.

Mitchell’s robot is an example of rederiving the context information when it is needed. Figure 8
shows one possible PSCM version of Mitchell’s method learning the cvelic toss. The execution
trace on the left shows the planning that initially occurs and the execution trace on the right the
application of the learned rules. In Figure R the operators are shown in bold. The action requests
and any state changes appear in normal roman font, and indentation indicates processing within
the operator. The text in sans serif font. is the planning activity. Changes made to the state in
the sans serif section are removed when the action request is actually made, If an operator occurs
within another operator. the sub-operator must be in the context of a sub-problem space.

Comparing the left hand side of Figure 8 to the cvclic-toss example in Figure 2. Mitchell's robot
does more planning to determine that the toss (right) action request will lead toward the objective.
When the toss (right) action request is made a rule is created that will request a similar action
in a similar situation. All the rules created in Figure 8 are very similar to the chunks created
in Figure 2. except that the intermediate state information is included in all the chunks. The
intermediate state information is inclnded becanse a complete plan is used to determine the actions
and in the complete plan the intermediate state value is important. Proceeding down the left hand
side of Figure 8, when the hean bag leaves the right hand moving toward the left hand. the process
of determining the next action starts anew from the cyelic toss goal and the perceptual knowledge
that the bean bag is moving toward the left hand. The process rebuilds whatever coutext is needed
to determine that the cateh (left) action is the next action that leads toward the objective and thas
should now be requested. A new rule for this plan is now created. This process continues until
the eyvelie toss objective is reached. The right hand side of Figure X shows the application of the
learned rules. one for cach cvelic-toss operator. The evelie-toss operator is serving as the goal in
Mitehell's system,
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Figure 8: Mitchell's system - \lways re-planning

The PSCM implementation shown in Figure 8 differs from Mitchell’s work in two ways. Iirst
Mitchell’s robot doesn’t have operators. meaning that the stimulus-response rules apply immedi-
ately without any decision process occurring. The only issue this raises is thal some reasoning
may be occurring in Figure 8 (i.e. in Soar) between the creation of the operators. and the selec-
tion of the operators. Mitchell’s system encapsulates this reasoning in the left-hand side of the
stimulus-response rule. Such an encapsulation assumes that no new goals or knowledge will change
the reasoning process. The second difference between Figure 8 and Mitchell’s work is that action
requests are idempotent, that is they can be requested multiple times and have the same effect as it
they were requested only once. OQur action requests recognize the action has already been requested
and uses the recognition to withhold the same action being requested.

Mitchell avoids non-contemporaneous stimulus-response rules by working from a snap-shot of
the world. having the only result be the action request. and always re-planning. Stnce he works
from a snapshot. the external world cannot change while he is doing the planning. eliminating one
source of non-contemporaneous stimulus-response rules. Since he has no persistent objects in his
planning sub-goals (he always re-derives the objects from the new snap-shot), he has eliminated
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the other source of non-contemporaneous stimulus-response rules. .\ Soar model can always do
the re-planning, but, as we will show in Section 4.2, this has implications for the number of Soar
operators required to achieve an objective. A Soar model can also specify that all planning is done
in a snap-shot of the external world. though it is not usually done.

Making recovery work

Once the problem solving context is restored, then the original knowledge can automatically apply
and the problem solving continues. Creating a system so that this process can occur easily is more
an issue of context reconstruction than problem solving continuing. We have shown two wavs to
reconstruct the context, both of them benefiting from the use of small operators at the base of the
operator recursion. The smallest operators are those that do one change to the state. and then
terminate. Building productions from the small operators means that when an impasse occurs in
the application of a complex operator, other operators can apply. Unfortunately. this only works
if the small operators are available in the problem space that resolves the impasse. This section
describes a method to make the small operators, and thus their knowledge. available again. through
the creation of a new operator. The method is not automatic today. but it shows how a Soar model
can be changed to work around this problem.

The lack of an operator arises because the impasse can occur in the middle of the complex
operator’s implementation. Also. the impassed situation might not match any of the sub problem
space’s operator’s proposal conditions. We saw this in Figure 7 after the initial learning, The
cyclic-toss operator impassed after the first toss because the chunk to do the cateh didn’t apply.
The Throwing problem space was selected to resolve the impasse. but the proposal conditions of
the two operators in the Throwing problem space didn’t mateh the state of the bean bag being in
the air.

One way to ensure that the small operators are available is to do all the work within a single
problem space. However, making all the operators available in one huge problem space precludes
problem spaces’ organizational advantages. Also. the existence of multiple problem spaces is not
the issue, we assume the complex operator’s implementation was learned by a previous traversal of
the problem space structure. The creation of a new operator will fr ree the problem space structure
to be traversed again. relearning the particular knowledge that is appropriate to this new situation.
This new operator will also encapsulate this new knowledge.

Creating another operator could be done automatically in the impasse that occurs because no
operator is available, but care has to be made so that the proposal conditions of the new operator
are reasonable. In this situation, we don’t want to learn to cateh just any objeet. only those objects
thrown from the other hand. How to automatically create the operator is bevond the scope of this
paper. The robot work described here shares a common problem space and thus does not have this
particular problem. The work that has been <one in this area has created overly specific chunks
that were linked to the particular objectives of the cvelie-toss operator.

*

The reason for creating a new operator is that the model made a commitment to a particular set
of knowledge in a particular set of operators, and that structuring has turned out to be wrong, It
is recognizing that the current organization of the knowledge into operators is causing the problem.
The inapplicability of knowledge that exists within a different operator just means that a new
operator has to be created that can also encompass that knowledge. possibly duplicating it.



2.4 Eager vs. Lazy Detection

So far we have been describing how non-contemporaneous chunks can cause operators that do
multiple actions to split. In essence the problem is that the learning method in Soar does not
correctly handle non-contemporaneous information. and the fact that a temporally inconsistent
situation did exist is detected only when the chunk fails to apply. An alternative approach is
to change the architecture to detect when objects become non-contemporancous and take the
appropriate actions so that a non-contemporaneous chunk is never created. Such a change to
Soar has been suggested in a mechanism called S-Support [Laird and Huffman. 1992]. The main
difference between a Soar system without S-support and one with S-support is when the fact
that non-contemporaneous information was used is discovered. A Soar system without S-support
detects this situation when an attempt is made to use knowledge built on non-contemporaneous
information. because the chunk fails to apply. We call this lazy detection. because it is happening
as late as possible. The Soar system with S-support detects and removes the non-contemporaneous
information even before it can be used. This is cager detection. because it is as early as possible.
The purpose of this section is to show that early detection also splits the operator. requiring some
form of recovery as in the previous section.

S-support also splits

First we note that learning in Soar requires an impasse and. for any impasse. we have a super-context
(the impassed one) and a sub-context. The creation of a non-contemporancons chunk depends upon
the existence of at least one persistent sub-context object generated from a super-context object
that has changed since the generation. In the example shown in Figure 3. the persistent sub-context
object is the toss (left) operator that was created when the bean bag was in the right hand 0. The
bean bag’s location is the changed super-context object. S-support ix a proposed change to the
Soar architecture that changes the persistence rules in Soar to remove all sub-coutext objects that
were generated from clianged super-context objects. Removal of the non-contemporaneons objects
removes one of the conditions (persistence) that allow non-contemporancous chunks to be created.
Thus. the Soar program cannot create a non-contemporaneons chunk. However, further problem
solving might be dependent on the object that S-support removed. For this problem solving to
continue a new similar object with S-support has 1o be created. The process that creates the new
object turns ont to be the same process that the recovery method uses 1o re-construct the coptext
after a non-contemporaneons chunk.

As an example. in Fignre 3 the original toss (left) operator was dependent upon the bean bag
being in a hand (as seen on the left in Figure 9). The right side of Figure 9 <hows that when the
hean bag appeared in the left hand this toss (left) operator ost one member of its super-context
support set, and thus would be terminated by S-support. indicited hy the grev =X in Fignre 9.
Something that was not seen in onr simple example was that when the bean bag was in the air a
catch (left) operator was proposed and this cateh (left) operator is dependent npon the bean bag
being in the air. However in our original system. since we had what appeared to be a perfeetly
good operator already selected this new proposal was ignored. With S-support terminating the
original toss (left) operator. the new catch (left) operator can be selected. Thus, the example in
Figure 3 with S-support wonld learn all the right chunks in the first pass, rather than the two
passes used with non-contemporaneous chunks. S-support assumes that problems will occur when
a temporally inconsistent situation arises before any chunks are built. Note that the method of
recovery is the same here as when the non-application of a nou-contemporancous chuuk showed a
past temporal inconsistency. In the example in Figure 3 both cases have to seleet awd apply a catch
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Figure 9: Changing the super-context support

(left) operator. Using non-contemporaneous chunks is lazy because the new cateh (left) operator
is applied at the latest possible time; S-support is eager because it applies it as soon as possible.

The interesting concept here is that recovering from an S-support retraction of support is exactly
the same as recovering from a non-contemporaneous chunk. Thus. S-support should not affect
programs that can recover from non-contemporaneous chunks. and programs that can’t recover
from the loss of S-support to objects cannot recover from non-contemporaneous chunks. This
suggests that S-support does not change the set of effective Soar programs, but is. instead. an
implementation mechanism that speeds up learning by forcing Soar programs to deal with the loss
of super-context support immediatelv. The situation is analogous to the tyvpe system in modern
programming languages like ML. The ML language states that all programs will be tvpe correct.
Implementing compile-time type checking in ML is not a change to the set of valid M1 programs.
it is just an implementation mechanism that forces one to deal with tvpe problems at the compile
stagé.

2.5 Relationship of the methods

We have described two methods (s-support and non-contemporancons chunksy for detecting a tem-
porally inconsistent situation. and two methods (replanning and sharing state) for recovering from
the effects of such a situation. The reasons for picking a detection and recovery method are inde-
pendent, and thus can be mixed depending upon the maodel’s requirements. To summarize:

Detection - Since this is architecturally defined we have an either/or situation.

e S-support -

- Farly detection of temporally inconsistent situations.,

— Faster learning,

— Unnecessary work done by architecture removing items that will not he used.
e Non-contemporaneous Chunks -

— Late detection of temporally inconsistent sitnations.

— Slower learning. Often multiple presentations of same problem,

~ Necessary matching occurring on impaossible to nse prodoctions,

Recovery - Here we have a spectrum of opportunities, where the model’s tradeollfs will determine
the mix of replanning vs. state sharing. This can change for different parts of the model.




¢ Replanning

— Assumes that all the planning decisions should be remade for any new situations.
Thus the stability of the external world is low.

— Results in shorter elaboration chains as a reasoning chain is encoded in a chunk.
o Sharing State

— Assumes problems will occur.

— Constantly duplicating results. perhaps unnecessarily.

— Longer elaborations. each intermediate result is encoded in a chunk.

Furthermore, the recovery methods assume that the organization of the application knowledge
into the correct set of operators can be a problem. The reorganization of that knowledge means
duplicating it in some cases. and requires the ability to either create new operators for a problem
space, or to use the same operator in different problem spaces.

3 Deliberate splitting: Learning PSCM operator terminations

In our bean bag tossing example in Figure 2. we purposefully ignored the fact that the toss from
hand to hand takes time in the external world. In"general the external world takes time to produce
a response when an action is requested. When the external world’s response time is included in an
operator we call it the slack time of the operator. An operator has slack time when the operator
requires a specific result from the external world to continue applying. We explore in this section
how the external world’s response time and the uncertainty of the duration of the response time
affects PSCM problem solving.

In addition to taking time. the external world may not respond as expected. If a PSCM operator
needs a specific result from the external world to continue. then the lack of this result could keep
this PSCM operator from completing the “effective™ function the operator is supposed to compnte,
Normally, an effective operator terminates when it has reached its desired result. To deal with
the nncertainty of the external world producing the desired result, we deseribe the need for an
additional class of PSCM operator knowledge. which we call operator termination, that defines
when the operator has completed. Operator termination knowledge is a dyvnamic redefinition of
the PSCM operator’s completion. Sometimes this termination knowledge will be overly general.
applving at inappropriate times.

When overly general operator termination knowledge applies. it removes the context the op-
erator provides even though the objective of the operator might still be achieved. Indeed. the
fanatical completion assumption would have us achieve this objective. To achieve the objective, we
will describe a process similar to the recovery from non-contenmporaneons chunks in Soar described
in Section 2.3. The recovery process again consists of context restoration and continuation with
previous operators. An operator provides both a context for the internal changes to the state and
a context for comprehending external changes 1o the state. This is the context that is lost wh
the operator termination knowledge applies. In this section we are interested in the context for
comprehending external changes, because the lack of a particular external result is what generates
the operator termination and recognizing the appearance of the external result is the key for when
to restore the context.

When an operator has been terminated before reaching its objective becanse the external world
did not provide a resnlt, we say it has been split by that 1ermination. Al the processing leading up
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to the termination is the before-split portion. The restoration of the context upon recognizing the
result, and the continuing of work on the objective of the operator. is the after-split portion. This
is verv similar to the architectural splits of Section 2. We will show that in Soar. splits of this 1vpe
happen only when the external world’s results aren’t immediately produced. because quiescence
is required for Soar operator termination knowledge to be utilized. The definition of when Soar
utilizes operator termination knowledge gives us a more dyvnamic Soar operator that can adjust 1o
the reaction time of the external world, splitting onlv when required by the current external world
interaction. Yet this Soar operator can still achieve the original PSCM objective.

3.1 Actions take time

Figure 10 shows the problem-solving involved in learuing the first part of the evelie-toss operator
from Figure 2 with the transit time of the bean bag included. In Figure 10. the agent’s first action
request is to toss the bean bag from the right hand (Y to the left hand. The second operator selected
is to catch the bean bag with the left hand @®. but this operator must wait for the bean bag to
get close to the left hand to apply. As before. though it is not shown in LIigure 10. only when the
bean bag is recognized as back in the right hand does the cvclic-toss operator terminate. In this
example. the movement of the bean bag from the right hand to the left takes time. This time is
considered to start when the agent makes the action request 3 to throw the hean bag. and end
when the bean bag is in the left hand @ Since the movement of the bean bag takes time. the agent
has to do something while the bean bag gets to the left hand so that the catch (left) operator can
apply. The simplest action for the agent to do is to wait. This is shown at the bottom of Figure 10
as the execution of the check-progress operator in the Wait problem space. This new problem space
is created in response to the lack of immediately available knowledge to do anyvthing else in either
the juggling or toss problem spaces once the bean bag has been tossed. The hasis for formulating
waiting as the task of this problem space is that an action request has been made (toss (right ).
The check-progress operator in the Wait problem space is checking that progress is being made
toward the goal of the hean bag getting to the left hand. It is the presence of the action request
and the recognition of progress that defines this impasse as slack time.

The example in Figure 10 shows that resolving a lack of knowledge can lead 10 external world
actions, the results of which are interpreted as leading toward the goal state. These types of
external world requests usually happen when resolving two particular tvpes of lack of knowledgee:
an inability to apply an operator (exactly the situation in Figure 3 where the precondition of the
toss (left) operator is not met). and not knowing what actions the operator should request to reach
the objective (the situation in Figures 10 and 3 for the evelic-toss operators). Both have 1o do with
deciding how to apply the selected operator to the state. PSCM operators built in this wayv do not
separate action requests from the comprehension of the results as both action request and result
comprehension occur within the learned PSCM operator. Pigure 11 shows the complete evelic-toss
operator with the top left part of Figure LI corresponding to the description in Figure 10, and the
right side corresponding to the final learned operator. As in Figure 8. the operators in Figure 1]
are shown in bold with the actions done by the operator in a normal font. However, the waiting
in a sub-problem space in Figure 1 is shown in italics and this will be the convention in this vpe
of figure from this point on. In Figure 1l both toss and both catch operators are sub-operators of
the cvelie-toss operator. The waits are at a different indentation level indicating a sub-space where
progress conld be checked. In the first case the agent is waiting lor the precondition of the catch
{left) operator to be met. Figure 11 shows that the evelie toss operator will end ap with two sJack
times that correspond directly to the time it takes the bean bag to actually travel from the pight
hand to the feft and back again. [t is the actual presence of the bean bag close to the left-jrand
that allows the action of catching the bean bag in the left hand to be requested. This means the
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Figure 10: Learning the throwing of a bean bag when toss takes time.
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Figure [1: Learning when waiting for responses

operator application is suspended while waiting for the requested action of tossing to the left hand
to be completed in the external world.

In our example, we simply checked for progress towards the desired result during the slack
time. Section -} describes why vou might want fo do other activities during this time. and gives the
methods for doing so. In the next two parts of this section we discuss what happens if either the
agent is able to determine that the result will never he achieved or the rate of progress towards the
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result in the external world is too slow. We call both of these situations ope rator frustration. The
knowledge learned from operator frustration act to redefine the Soar operator’s objective allowing
the Soar operator to be cousidered completed prior to actually accomplishing the operator’s PS('M
objective. This redefinition is operator termination knowledge. Other knowledge might also be
learned when learning termination knowledge that would restrict the use of the operator in similar
situations. We do not consider that type of knowledge here.

We show in the following sections that checking for progress is a difficult and knowledge rich
process. given the possibility of an increasingly hard to detect difference between slow progress and
no progress toward some result on the way to the objective. However with the fanatical completion
assumption, the PSCM has a qualitative difference between slow progress and no progress. No
progress indicates the objective can be discarded. and slow progress indicates the agent should wait
for the result because the objective can be achieved. With a diminishing difference between slow
progress and no progress. mistakes will be made. Recovering from these mistakes uses techniques
similar to those in Section 2.3. These techniques can also be used as the standard methods to
handle situations where how to measure progress is not known.

3.2 Operator frustration over unachievable goals

PSC'M models can refine their knowledge by interacting with the external world. These experi-
ences may indicate that some aspect of the original objectives is currently unachievable and that
this aspect, and maybe the entire objective. should be discarded. Discarding aun objective is not a
violation of our fanatical assumption. because it is not an artifact of the PSCN or SLOM architec-
ture. Indeed. we will show discarding objectives is the mechanism that lets operator applications
continue to be effective.

As an example of refining knowledge. we will modify the cvelic toss example shown in Figure 10.
Figure 12 shows an attempt by our agent to apply the knowledge of eyelic tossing using a helium
balloon instead of the trusty bean bag. As shown in Figure 12, this attempt fails miserably. since
the balloon flies into the air rather than taking the standard rrajectory to the other haud. The
agent now has to determine how to recover from the current situation and whether the balloon
will ever land in the left hand. Recovery could include grabbing for the balloon. The important
issues addressed here are how the agent learns that tossing the balloon up will not work. and what
actions are taken given that knowledge.!

To determine that the helium balloon will never come down the agent needs knowledge that
might have heen unavailable prior to tossing the balloon. It could. however, suggest the explanation
that helium balloons don’t come back down to the same location. Withont knowledge such as this.
no basis exists for believing that the balloon won't land in the agent’s hand some time in the future,
Observation by itself is not enough to be sure hecanse we are looking at a continnous process. At
some time we have to draw a line distinguishing whether the agent believes the balloon will come
down or not. Once the agent has decided that 1ossing a helium balloon was o bad idea, this
knowledge needs to be used to terminate this chain of actions for achieving the goal of juggling.
The cateh (left) operator needs to be angmented with the knowledge that it will be ineflective
when attempting to cateh a tossed helinm balloon. Likewise, the eyvelic-toss operator needs to be
augmented because it will also never reach its objective of a cvelie 1oss of the helium balloon. Both
of these additions are operator termination knowledge. Of course. other knowledge conld he learned
that would also refine the cvefie-toss operator and inhibit it when the object to b tossed was a

"The agent could, of conrse. toss the helinm balloon down and catch it as it rises. For simplicit v we assume our
agent does not have the knowledge that allows it to consider thi form of jugeling,
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Figure 12: Frustration when tossing a helium balloon

helium balloon. We do not address the need to change the juggling goal. because it is unclear that
it is unachievable. There could be other jugglable objects available.

Finding that an objective is unachievable can happen at anv time during the problem solving
involved in trying to achieve it. If the problem solving is done completely internallv. the initial
situation can bhe restored. The external world cannot alwavs be restored to the initial situation. ~o
handling unachievable objectives is mainly an issue when working with the external world.

We do not treat this form of frustration further and have included it mainly to show that a
mechanism must exist to terminate frustrated operators and that this mechanism may need to be
knowledge rich. Unfortunatelv. even if the knowledge available for determining that the balloon
will not return is inadequate, the cyclic-toss operator in our example must be terminated as the
balloon really won't come down. Termination of the operator withont nsing domain knowledge is
an example of the second tvpe of operator frustration  frustration over the lack of progress.

3.3 Operator frustration over lack of progress

In manyv cases of interaction with the external world. it is difficult to tell whether the agent should
continne waiting for a result to occur or abandon the pending operator. This situation can occur
either becanse the agent has a lack of knowledge abont how to measire progress, or hecause the
rate of progress is slow. In this type of slack time impasse. the external world has been requested
to perform some action. bt the changes (or lack of changes) in the external world do not indicate
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If The problem space is Juggling and
the operator is cyclic-toss and
the toss-right action has been requested for an <object> and
the location of <object> is over the agent’s head

then the cyclic-toss operator should be considered complete and
any objectives established by evelic-toss should be removed

Figure 13: Example of over-general operator termination knowledge

that progress is being made towards the objective associated with the action.

We can modifv our tossing example to create an external world situation of this tvpe of by tving
the balloon to the bean bag. By changing the relationship of the balloon’s lift and drag to the bean
bag's weight. we can continuously vary how long it will take for the bean bag to get from one hand
to the other. and likewise the rate of progress of the toss. Thus. we can ensure that the combination
of balloon and bean bag will get to the left hand. but that it will take an arbitrarily long time {we
have a similar situation when we are juggling a helium balloon but don’t have knowledge about
helium balloons). At what point does the agent give up? And what is it giving up ou? Tossing.
certainly. but what other components of the situation are considered important?

There doesn’t seem to be a single answer to when the agent should give up. Further. no basis
exists for expecting that. when juggling the balloon. the balloon should be considered the cause
of the decision to give up. It could be wind or any number of other items in the situation that
are identified as the cause. In short. with no knowledge to help. the agent can’t determine how 10
assign credit or blame. In our case. if the helinm balloon cannot be assigned blame for the problem.
then the termination knowledge might be applicable as soon as anyv object is tossed.

The agent could take the radical approach of terminating the operator as soon as it finds that it
cannot measure any progress. This approach has two problems that can beillnstrated with jugeling
the balloon bean bag combination. The first is that when the balloon beau bag combination comes
down in the left hand the agent should be able 1o recognize that this event occurrea because the
balloon bean bag combination was thrown in the past. and that this throw was part of a cvelic
toss so that the balloon bean bag combination can be tossed back if it is still appropriate. This is
a direct inference from the fanatical completion assumption. The fact that the balloon did come
down means that the operator did not need to be terminated. and thas the learned termination
knowledge is over-general and unfortunately will be applicable in other situations where waiting
could possibly be more appropriate. \n example of over-general termination knowledee for the
cvelic toss operator is given in Figure 13 where, anv time the object being tossed goes over the
agent’s head the cvelic toss operator will be considered completed. In the next section we will
brieflv tonch on the problem of recovering from an over-general operator termination 1o reach the
original objective. Recovery here is similar to that in Section 2.3 and it means setting up the

conditions so that work on the original objective can continue. The second problem is a form of

the masking problem [Tambe and Rosenbloom. 1993]. Since the agent shonld use the experiences
in the external world to build up its knowledge base. sometime in the future the agent would want
to create more specific knowledge that utilizes the expanded knowledge base. However. the original
termination knowledge will mask the new knowledge bhecause an impasse will not oceur allowing
the new knowledge to be utilized. We will not address the masking problem further wn this paper.




3.4 Recovering from an over-general operator termination

Terminating the PSCM operator means that the context the operator provides ix not available for
interpreting what is happening in the external world. As an example. suppose a high toss of a bean
bag comes down into the left hand some time after the cateh (left) operator and evelic-toss operator
have been terminated by the knowledge in Figure 13. How does the agent know to continue with
the next toss? To continue. the agent has to understand that this change in the external world is a
result of the toss (right) action request and is part of a cyvelic-toss. Thus. to understand what the
bean bag coming into the hand means. the PSCM context has to be restored; then the processing
can continue if it is still appropriate.

In Section 2.3 we showed two different tethods for restoring the problem solving context after
a non-contemporaneous chunk didn’t apply. that let us recover from the disruption caused by the
non-contemporaneous chunk. Once the context was restored. then the problem solving continued
naturallv. and the objective of the operator was achieved. The first method restored the context
via re-planning from the original objectives and the new sitnation. The second method continually
saved the state of the planning activity. so that the problem solving context was immediately
available when the disruption occurred. Variations of both these methods can be used in recovering
from the over-general operator frustration knowledge. providing us again with a continunm of
solutions. Re-planning is exactly the same as in Section 2.3 and generates a new context that
is like the old one. different only in that new svmbols may be generated for the same objects.
However. the method of sharing state in Section 2.3 doesn’t work directly because the termination
knowledge removes all traces of the terminated operator. Instead. before the operator is terminated.
appropriate portions of the context can be memorized. The memorized context can then be nsed
to recreate the context at the correct time. This memorization and re-creation method is similar
to the shared state of Section 2.3 because the problem solving coutinues from where it was stopped

without re-doing any of the planning,.

Restoring the context through planning

Mitchell’s robot svstem [Mitchell, 1990] architecturally plans until an action is known to he
on the path to achieve the goal. then it alwavs terminate the operator. and re-plans for 1he next
action. Figure X showed Mitchell’s system learning the cvelic toss. ignoring the external world
response time. Fignre Lt shows how a PSCN implementation of Mitchell's method would learn the
cvelic-toss operator when external world response time is considered.  As in the problem solving
trace where the agent waited. Figure 1L the left hand side of Fieure 11 shows the problem solving
trace while learning and the right hand side shows it after learning, In Figure L4 the evelie-toss
operator is terminated as ~soou as a real action request is made. This pats waiting for a response
outside of any of the operators, as shown in Figure 11 by the lack of indentation.

Re-creating a previous context

Fhe context that needs to be restored by recovery includes the ohjectives of the operator (ie.,
the coal that describes what the operator is trving to achiever and. possiblv, other state informa-
tion. The actual operator doesn’t need to be rostored i processing for the abjective can continue.
Restoring the context when a resnlt is observed requires some methodology for recoenizing when
an external change should be considered a vesalt. This methodology can he knowledee lean and
assnmption-rich, assnming the first observable change in the external workd s the result of the




Initral Problem solving Trace
{before learning)

cyclic-toss

toss (right)

toss-right action request
catch (left)

catch-left action request
Note Intermediate State
toss (left)

toss-left action request
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Funal Problem Solving Trace
(after learning)
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Figure 11: Learning when always re-planning and actions take time

requested action. The methodology can also use varions knowledge sources, snch as previous expe-
rience in this domain. or an internal model. The key is not the restoring of the context. for that is
available at the time the termination knowledge is learned. but rather recognizing when the context
should be restored, as this situation is not availabte when the termination knowledge is generated.

Creating the expected situation and then using this created situation as the source of knowl-
edge of when the restoration should occnr. is one way to generate the restoration knowledge,
our example, the expected response is the bean bag (or balloon) in the left hand. We want the
recognition of this response to lead to continuing the cyclic toss. To continue the evelic toss we
need to install the toss-twice objective and mark the objective to indicate the object has completed
one toss. Thus. the restoration knowledge might be what is shown in Figure 15, The knowledge in
Figure 15 restores the context that was available when the operator was terminated. Onee restored,
the catch (left) operator can apply. completing the next step towards the original operator’s objee:
tive (do cyelic-toss). The objective can be removed, il necessary, by the same process deseribed in




If The problem space is Juggling and
the toss-right action has been requested for an object and

the status of the object is moving

the location of object is close-to <hand>

<hand> is the left hand

then the cyclic-toss operator should be proposed with
the toss-twice objective installed as a sub-task of juggling

Figure 15: Example of over-general restoration knowledge
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cyclic-toss
toss (right)
toss-right action request
catch (left)
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Slack time conlinued
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Final Problem Solving Trace
(after learning)
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toss-left action request
Slack time starts

Wart for Toss Completion
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catch-right action request

catehi-right action request

Figure 16: Learning when saving plauning, state

Section 2.3.

Note that, just like the termination knowledge in Figure 13, the restoration knowledge show in
Figure 15 is overly general. Some time in the future. when the agent is juggling and the juggled
object is close to the left hand. the agent will suddenly have the goal of doing the last half of a
cvelic-toss! The problem is that the restoration knowledge is not linked to the initiad operator or to
the specific type of juggling goal that led to the cvelic-toss operator being proposed. This linkage
can either be explicit, conveved through some constant shared by this specific juggling goal and the
restoration knowledge. or by linking to the previous step in some wanuner, or throneh some moge
complex mechanism like an intention. We will assume that the restoration knowledae can be nade
specific enough.




Figure 16 shows a problem solving trace for doing the cyclic toss both belore and after learning
when the state of the plan is saved. Its format resenibles the other traces except that the start
of slack time is explicitly represented because the slack time starts as part of the operator and is
continued after the operator is terminated.

The trace in Figure 16 begins like the trace in Figure 11 until the slack time occurs. When
slack time within an operator is initially detected. rather than just waiting. three operators apply.
These operators generate the knowledge to both split the operators above and recognize when the
proper external world events have occurred so that the context can be restored. The visualize-
result operator in effect does a one-step lookahead to determine the action’s expected result. In
this scenario, the toss-right is the only action request that has been made. so visualize-result
changes the current situation to one showing the bean bag close to the left hand. BuHld-recognition
then generates restoration knowledge such as that shown in Figure 15 for the cvelic-toss operator
using the visualized result and portions of the current context.” Build-termination creates the
termination knowledge for the cyclic-toss operator. like that shown in Figure [3. but not based
upon any domain knowledge. The termination knowledge for the catch (left) operator is based
solely upon the existence of slack time. Slack time in this case is recognized by both the lack of
immediately available knowledge and the fact that an object was requested to be tossed from the
right hand. The cyclic-toss operator’s termination knowledge is based upon the same information as
the catch (left) termination knowledge. and the non-existence of alternative operators to implement
the cvclic-toss. This termination knowledge applies, terminating the operators in Iligure 16, Lt
doesn’t end the slack time {the external world has to respond for the slack time to be over). Thus,
the agent now waits for the bean bag to come close to the left hand ontside of the operator. These
three operators have split both the evelic-toss and catch (left) operators, while building the recovery
mechanism that kevs off the expected result of the bean bag being close to the left hand. This is
the basic mechanism of saving state.

We continue the processing in Figure 16 when the bean bag is close to the left hand because
the recognition knowledge re-establishes the removed context. The context is exactly the same as
before the split. enabling the agent to select the cvelic-toss operator again. and the catch (left)
operator under it. After catching with the left hand and noting the intermediate result. the agent
still has the ohjective to toss the bean bag back to the right hand. and the toss operator is nsed
to begin achieving this goal. Once tossed. we again have slack time. this time oceurring within
the catch (right) operator. This cateh operator and the evelic-toss operator are again split in a
similar manner. The previous chunks did not apply because they were dependent upon the left
hand catching, not the right. Finallv. when the bean bag is close to the right hand. it is canght
and the cyclic-toss is completed.

The right hand side of Figure 16 is much simpler. It shows the evelie-toss operator being selected
and applied three times in achieving the evelic-toss’s objective. Once the toss from the right hand
is requested the cyclic-toss operator is terminated by the previously learned termination knowledge.
This knowledge also removes the objectives from consideration. When the bean bag gets close to the
left hand. the restoration knowledge applies, re-creating the context. and the evelic-toss operator
is selected and applied, this time catching the bean bag. noting the intermediate state and tossing
it back to the right hand. This toss also takes time, so this instance of the evelic-toss operator is
also terminated. Finally when the bean bag approaches the right hand. the last instance of the
cvelic-toss operator is selected. catching the bean bag, and achieving the evelic-toss™s objective.

‘Creating this knowledge requires data chunking [Newell, 1990] the context. However, in this instance we have a
generator for the context in the orginal context-building productions.




Always Split  Always Split Never Split

Save state Re-plan (Always wait)
Cyelic-toss 3 4 l
Robot pushing a box 13 10 9

Figure 17: Number of operators with splitting at PSCM slack time
Continuing the PSCM operator

Continuing the work on the objective of the PSC'M operator involves applyving other operators. An
important issue. then, is whether the correct operatars will be available. Our contention is they are
available because the applicable operators (after restoring the state if necessary) are exactly those
that were originally available. In the left hand side of [Migure 16. the first split occurs after the
bean bag is tossed. A new proposal for the cyclic-toss operator was created by the build-recognition
operator during the slack time. This proposal makes the cyclic-toss operator appropriately available
at the end of the slack time. The catch (left) operator is available because the context provided by
the recognition knowledge is similar to the original context

3.5 Dynamic operators

We have shown that when interacting with an external world that has uncertainty in the results
it provides to actions, then operator termination knowledge must he learnable. However. distin-
guishing between the situations where operator termination knowledge shonld be learned and those
where it should not is difficult. Also. the operator termination knowledge may be over-general. ap-
plving in situations that are similar to the learning situation but that don’t require the termination
knowledge. To recover from the application of operator termination knowledge and continue the
problem solving requires that the context that existed before the termination be restored. The use
of operator termination knowledge separates the knowledge in an operator into two components: an
action-request component, that determines what action should be done. and a comprehend-result
component. that completes the problem solving associated with the original operator. In this sec-
tion we show that if operators are always split when an external world action request is made, then
the number of operators executed to achieve some result can grow tremendounsly. Although growth
can be moderated by splitting in a less pedantic manner, the reason for splitting remains: progress
in the external world is too slow. lu short the external world’s response time defines the grannlarity
and number of PSCM operators that a model uses to do a task.

Figure 17 shows the number of operators used to achieve two tasks where either the operators are
always split after an action request or never split. The first task is the familiar cvelic toss example
and the second is a more complex task of a robot pushing a box. The model used for each task sen
action reguests to the external world at each step of its planning and used the results to verify that
the plan was working according to its expectations. The data in the lirst and second column comes
from a Soar svstem that always splits the operator whenever an action request is made. and then
restores the context when the desired result becomes available, so that the processing toward the
aperator’s objective can continne.” The data in the third column comes from a similar Soar svstem
that never splits the operator when an action request is made. but instead waits until the desired

“T'he robot “Always split with re-planning” is a hand simutation and the = lways split saved state”™ implementation
actually saved the planning state rather than getting rid of it at termination and later restoring it.
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response is found in the situation. allowing the operator to continue. Figure 17 shows that alwavs
splitting means many more operators in both recovery scenarios. These extra operators can Hmit
how effective the agent can become in doing some task. This limitation shows up if operators are
being assigned some real time. like 50 msee [Newell. 1990]. so that a model can be correlated with
data from people. The extra operators may make the model overpredict the data. The linitation
also rears its head when doing planning, for planning is a NP-hard task [Chapman. 1987] and more
operators reduces the effectiveness of any planning activity. The number of operators hecomes even
higher as the granularity of interacting with the external world becomes finer. To ease this growth
effect, we notice that we only want to split operators when no progress is being made during slack
time, not at everv action request. The number of operators used by a model that uses this splitting
philosophy to do a task would be somewhere between the never-split and one of the alwavs-split
cases. Since splitting in this model is dependent upon how quickly the external world responds. the
number of operators is ultimately dependent on the response time characteristics of the external
world.

The number of operators to do a task would seem to only grow via splitting. However. one of
the interesting properties of operator termination knowledge is that PSCN operators split by such
knowledge can recombine to become a single operator again. if the PSCM is defined as waiting
for all immediate knowledge to apply before selecting a new operator.! Recombining happens if
the external world responds immediately. so no slack time exists in the previousiv split PSCM
operator. Thus the conditions may bhe right for operator termination. bnt with the external world’s
response available the rest of the knowledge associated with the PSCM operator can still apply. If
the operator is allowed to continue. delaving the use ol operator termination knowledge. then this
execution of the operator can achieve its objective in the normal manuer. This reconbining of an
operator. after it was split. again shows how the response of the external world defines the amoumt
of work an operator can achijeve.

As a final observation. when working completely with internally generated results (e.g. sinmu-
lating a sequence of events as in planning). split operators recombine. This happens because an
internal model of the external world provides the expected response to an action request imntedi-
ately. This recombining makes internal processing, like planning. simpler because the number of
operators is kept low.

4 Splitting with Multiple Objectives

[n Section 3 we were concerned only with checking that progress was being made during slack time.
However. if we have mulitiple tasks. waiting during slack time could be considered ineflicient nse
of the cognitive resources available. The PSCM has a sequential operator bottleneck. that is it
executes just one operator at a time. When waiting, the PSCM is observing progress being made in
one of its tasks. Rather than just observe progress. it might be able to make progress on a different
task and return to the original task sometime later. To achieve maximum use of the cognitive
resource, we would like to have the PSCNM operate on one of its other tasks when the work on the
currently executing task is suspended (waiting for an result to be observed ). This section deseribes

YSoar currently works this way, but the definition of the PSCM is anclear about when available operators are
consdered for selection, A PSCM operator conkd implement several Tunctions, cach defined by ditferent operator
termination knowledge. Over time. as the operator apphes, different termination knowledge can hecome apphcable
possibly starting the selection process for a new operator. The PSOM s nnclear on whether the first instance ol
applicable termination knowledge starts the selection process, or if some other condition of the PSON architecture
1s used to determine that some of this knowledge can beignored. Soar nses quiescence to determine the ternmmation
knowledge that defines the termination conditions of an instance of an operator.




g)@———»- o0
@ O—o
(a] O———>o0 o

Objectives Tasks Operators

Figure 18: Multiple Objectives and Multiple Tasks

what keeps this transfer of control from happening in the PSCM. then discusses two solutions and
how models built using those solutions are related. By transferring the control between multiple
tasks we are able to use the available cognitive resources efficiently.

A task is an abstract description of a process to achieve an objective. In PSCM terms, a task
can be represented by either a large operator that may include many steps. or multiple smaller
operators each doing only a few steps. When working with multiple objectives, either one has a
single task that can achieve all the objectives, or multiple tasks that one hopes can achieve all the
objectives together. Figure 18 shows a PSCM model with multiple objectives, the first two of which
are associated with a single task that has multiple operators to implement it.” The third objective
is resolved in a task that has only a single operator. while the fourth objective in Figure 1IN has two
operators.

When working with multiple objectives and multiple tasks. external events that occur while
processing any of these tasks can either indicate that the desirability of working on one of the tasks
has changed, that the application of one of the operators can proceed. or that the achievement
of a objective has occurred. As an example. the external world could change (my terminal might
burst into flames) so that an important task (saving my skin) should interrupt a less important
task (typing these words). In PSCM terms. the changing of the external world would make the
operators for fleeing, getting a fire extinguisher. ete. more salient. We want these more salient
operators to be selected and applied, ignoring what we are currently doing. In general, we would
like the processing of multiple tasks at the PSCM level to occur as just a sequence of operator
selections followed by their application. always working on the most salient task.

Unfortunately, it is unclear how such a sequence of PSCM operators could take advantage of
the slack time of the operators. Utilizing slack time within an operator means that one of the
following must occur:

e Split the PSCM operators with slack time into a sequence of sinaller action-request. comprehend-
result operator pairs.® This split uses the operator termination mechanism described in See-
tions 3.2 and 3.3 and the recovery mechanisim in Section 3.1 to remove the slack time from
the operator but allow the task to continue processing in the futnre.

This option removes the slack time from the operators. Thus we interleave small operators,
and a lack of something to do is the only reason to wait.

o (‘ombine operators [rom multiple objectives into larger operators. Since the PSCM has no

“This is a modification of Figure | in [Covrigarn, 1992},

"If the external world is very close to the internal model then perhaps the result does not need 1o be comprehended
and just a sequence of action-requests is needed. Throughout this paper. thougl. we will refer to these operators as
pairs.
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sequentiality requirements within an operator application. only the sequentiality apparent in
the data dependencies will restrict multiple objectives from being pursued in parallel. This
creates situations like at the top of Figure 18 where the first two objectives are processed by
the same task.

This option overlaps all the available processing so that it occurs within a single operator.
Thus. any waiting that exists after combining, is due simply to lack of something to do.

¢ Break the sequential selection and application of operators allowing multiple operators to he
applied simultaneously in the same problem space. Rosenbloom has proposed changing Soar
to allow this [Rosenbloom. 1993}.

This option also overlaps all the available processing, so that it occurs simultaneconsly. How-
ever, it provides some architectural assistance to the handling of the simultancons tasks.

Investigating the implications of supporting multiple simultaneous operators is bevond the scope
of this paper. The next two parts of this section investigate the first two methods and how they are
refated. We look at splitting operators at slack time and then interleaving first, hecause the splitting
portion should be familiar by now. The interleaving is fairly simple and all the mechanisms for
interleaving are in the Soar and PSCM architectures. However. interactions can exist hetween the
two tasks. As an example, given the two objectives of painting the ladder and the ceiling. the agem
should paint the ceiling first. This is a real problem when working with split operators becanse
during a split we have removed the information that other operators could use to constrain their
behavior. After interleaving we look at two methods of combining operators. one that requires
the knowledge associated with a strong model of the interactions between tasks. and one that
doesn’t. We show that the knowledge-lean system. breaks both the PSCN concept of an operator
implementing a function from one state to another and the fanatical completion asswmption. Thus
we discard it. The knowledge-rich strong model system comes from [Covricarun. 19921 and we
review it as a method of planning actions and paraliclizing independent interactions with the
external world.

4.1 A second task: Robot pushing a box

We begin by modifving our tossing example so that we have multiple operators available.
addition to tossing a bean bag from hand to hand. we make our agent a robot and give it a second
objective of pushing a box from room to room. An example problem in the robot domain is shown
at the top of Figure 19. At the bottom of Figure 19, the first steps toward solving the problem
are shown. The Push-Box-Thru(Door) operator has been selected () in the move-robot problem
space as the first operator to try for this task. This operator cannot apply becanse ol an nnresolved
precondition. As before. the PSCM casts the lack of knowledge of how 1o resolve this precondition as
a task to be solved in a problem space. The task is formulated to have an initial state (the curremt
state of the robot) and an objective of the unresolved precondition of the pushi-box-thrig Door)
operator (the robot and box are at the door of Room 2) in the same Move-Robot problem space
@®. In this Move-Robot problem space the go-thru{ Door) operator is selected (O as the most useful
operator on the path to achieve the objective of getting the robot into Room 2. However the eo-
thru( Door) operator also cannot apply and thus another new problem space is created (i) to resolve
its precondition. Finally we bottom out when the gso-to( Door) operator is selected avand actually
applies (). This application changes the state of the external world by bringing the robot 1o the
door. Once it is at the door. the termination criteria of the Move Robot problem space for the
“go-to” task is reached @ and at the same time the preconditions of the go-thragDoory aperator are
resolved so it can apply (). This tvpe of processing is repeated until one of the push-box thru(Door)
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Figure 19: Second Task: Robot pushing a box

operator preconditions is met (). Note that we still have not reached the point that the push-box-
thru operator can apply. So the termination condition for the second Move-Robot problem space
has not been reached and other operators should be available [or selection and application in that
space. Thus, we see another selection of the go-to operator (Don the far right that sends the robot
to the box’'s location.

Now that we have two tasks defined. what are the issnes in combining them so that we can
juggle and move at the same time?

4.2 Multiple tasks via interleaving

We showed in Section 3 that we conldn’t just wait within an operator for a desived external world
response because of the uncertainty of the external world producing the desired response. We
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then showed that splitting an operator into an action-request component and a comprehend-result
component removed the waiting time for the desired result from within the operator and still
achieved the objective of the operator. In this section, we have a different reason for not wanting
to wait within an operator; we want to make progress on other tasks while waiting. Splitting
the operator allows us to make progress on other tasks. because it removes the operator for the
suspended task allowing other operators to be selected. If these operators are for other tasks then
the agent can make progress on these tasks while the first task is suspended.

The problem with simply splitting is that the operators for the second task night interfere with
the operators for the first task. Nonlinear planning handles this situation if the knowledge of which
tasks are being combined and what all the operators do is available. However. splitting removes the
context of the split operator and thus the knowledge that would be the most useful to a planner. An
example interference scenario is the robot attempting to juggle and open the door at the same time,
Since the robot requires the hand that opens the door to be emptyv. throwing the bean bag to the
hand that has been directed to open the door interferes with opening the door. Likewise starting
to open the door with a hand. might also interfere with the catching ol a previously thrown bean
bag to that hand. This is not simply a case of nonlinear planning. because the splitting removes
the easily checked context and expectations about both the tossing and opening objectives. A
nonlinear planner would use the context to generate the constraints on the actions.

Controlling the interaction. when .splitting, requires knowledge about hoth the intention to
catch the bean bag with the hand and the intention 1o open the door with the hand. Once we
have knowledge of both intentions. then knowledge can be learned that constrains the solution ~o
that the interference is avoided. This constraining knowledge can be generated before rhe scenario
occurs by planning, or it could be generated after the scenario occurs by replaving what happened.
Generating the constraining knowledge by planning is difficult. becanse there is po Jocus 10 the
plan other than time going forward. Let’s go back to our example where the bean bag is in the
air and the agent wants to open the door with the catching hand. To determine a priovi that the
catching hand should not be nsed. we have to set up the situation so the conflict ix apparent. [his
implies that we have to set nup the conditions of the bean bag being close to the catehing hand,
But how do we determine that this is the salient condition to set ap? Perhaps the movement of
the bean bag would provide the necessary clue. However. doing this by planning does not seem as
straightforward as looking at an error caused by an interaction.

The constraint for tossing to the hand opening the door wounld be similar in form to the recovery
knowledge of Fignre 15. It wonld also recognize the intention of using the catehing hand for opening
the door. The action of the constraint would be to restrict the bean bag from being tossed to the
hand engaged in opening the door. Like the recovery knowledge. the constraint knowledge also has
to be linked to the intention 1o toss the bean bag. or it would be over-general. \s mentioned belore,
these intentions could take many forms. The issues surrounding their exact form and persistence
are the subject of further research.

4.3 Multiple tasks via combining operators

Combining operators means taking the portion of a set of tasks represented by a set of operators
and deciding to make a single task ont of doing the operators together, This new task is represented
by a single operator (we'll call it the C-operator) and the actual procedure is similar to the wav that
the cyelic-toss operator was learned in Figure 2. Once begou if ntore operators hecome available,
these new operators might join the combining process. Combining operators 4s important hecanse
it can cause previously independent tasks to be operated on in parallel. thas redncing the time to
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do both tasks. It leads toward larger and larger operators that encompass more and more tasks.

The first issue with combining operators is that the tasks they represent might not be completely
independent. Non independent tasks interact with at least some of the actions in one task affecting
the performance of the other tasks. This is the same nonlinearity in plans to reach conjunctive
objectives that we saw in Sectionf.2. Here we are simply interleaving in a sub-goal. The agent still
has the interacting task problem and can either plan how to achieve all the tasks to determine the
“best way to handle the interactions. or it could assume interactions are uncommon. and fix any
problems when they come up.

The lack of simultaneous completion of the operators in the combination process is the second
issue with combining operators. \ range of options is available for terminating the combination
process and its associated (‘-operator. At one end. termination occurs when all the operators being
combined are completed. At the other end. we terminate when the first operator completes. We
will explore systems at both ends of this range.

We will go over two methodologies for combining operators. The first methodology is from [(‘ov-
rigaru. 1992} and stresses the planning aspects of combining. Covrigaru terminates the (-operator
only when all the operators in the combination process have terminated. The second methodology
is knowledge-lean. It always starts the combination process when slack time is encountered for an
operator. this initial operator is the (-operator. It ignores the planning aspects so it has no need
of a model of how operators interact. It terminates the combination process when the (-operator
has completed its original function. possibly leaving only partially completed the othier operators
heing combined.

Planning the combination

Covrigaru combines operators in a deliberate way using a strong model of the interactions between
actions and generating a plan that optimizes the issuing of all the actions from the combining
operators. .\ strong model has interaction information for all the possible interaction situations.
He also uses the interaction model when a new operator becomes available to decide if the operator
should be added to the combination process. This planning is the strength of Coveigaru's work.
By careful planning larger and larger PSCM operators are created that encompass the knowledge
of dependencies between all the actions they can issue. Thus the actions are not only issued in an
implementable order, but in parallel when possible. The weakness of the work is that it reguires
a model of the interactions between actions to do the planning and to decide if a new operator
should join the combination process.

Covrigaru starts his process of combining operators by explicitly creating a new PSCNM operator.
called o “merge” operator. whenever the correct conditions exist for merging the tasks that the
available operators represent. ‘This merge operator executes the actions of all the to-be-merged
tasks. Figure 20 gives an example of merging by showing three operators (the circles at the top of
the triangles) with their associated actions (the sequence of boxes under the operators) in the top
part of the picture. In thus task only 1wo of the operators, push-hox-thra(Door) and toss (right ).
are initially available for selection. The operator toss (left) becomes selectable when the bean bag
is in the left hand. Instead of processing the operators sequentially, a new operator is created that
merges the actions of the three operators as shown in the bottom part of Figure 20.

Covrigarn uses a declarative form of the operator actions and a model of how the actions
interact to control merging so that the resulting operator issues the action requests in at least an
achievable, and possibly optimal. manner. When an action from a sub-operator hecomes available
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Figure 20: Merging of PSCM operators”

to be requested it is heuristically evaluated along with all the other available actions 1o decide the
next action for the merge operator to request. In our case. we can arbitrarily set the heuristic
evaluation function to prefer moving the robot over tossing a bean bag. Then all the actions for
push-box-thru(Door) will be preferred over toss (right) actions. But since push-box-thru(Door)
has some slack time, its actions are not always available. allowing the actions associated with toss
(right) to be requested in what would have been the slack time of the push-box-thru(Door) operator.

If a new task. represented by an operator, becomes available during the merging process then
this new task can be added to the set of tasks being merged and its actions can also be considered
and requested. This happens in Figure 20 when the toss (left) operator becomes available for
selection. The toss (right) operator has completed and the push-box-thrutdoor) aperator has ool
completed. How the new task will affect the current combined task is checked hefore the new
task is allowed to join the merging process. Checking uses the same model used to determine that
the original tasks should be merged. The merge operator is completely applied when all of irs
snb-operators have completely applied.

Figure 20 shows that what is really happening is the actual operators (that do the taskyare being
interleaved in the subgoal. This interleaving is done under the control of the planning mechanism.
Chunking is converting this interleaving into parallel applications. when possible.

“This is a two task modification of Fignre 6 in Covrigaru [Covrigare, 1992] where the toss (lelt) operator beconres
available for merging when the toss (righty operator has completed.
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Knowledge-lean combining

An alternative knowledge-lean method is to start combining operators when slack time is noticed.
Slack time causes an impasse o occur because the definition of slack time includes a lack of
knowledge at the PSCM. This lack of knowledge can be handled in the same manner as all other
iacks of knowledge in the PSCM. namely by the creation of a problem space to address the lack of
knowledge. The task of this problem space is to find a PSCA operation to do. If operators from
a problem space are eligible for selection then posing the task that allows these operators to be
selected is one of the ways of finding a PSCM operation to do daring the slack time. Unfortunately
this method of combination causes the function implemented by the C-operator to become ill-
defined, having side-effects that could not be expected when the operator is selected or terminated.
[t also terminates the combination process when the C-operator terminates. causing the fanatical
assumption to be violated for the other operators in the combination process,

Combining operators at slack time causes the operator functions to become ill-defined because
it overloads the meaning of the slack time impasse. When an impasse occurs in the PSCM because
an operator cannot complete. the task that is formulated for that impasse and the knowledge
learned are supposed to resolve the lack of knowledge that caused the impasse. In the case of slack
time. a lack of knowledge exists. but it is a lack of knowledge as to what to do while waiting for
a response from the external world. In the past we have selected checking progress on the original
task as what to do. But in a multiple rask model. we want to consider working on another task
as a more reasonable alternative. The C-operator in this method is the original operator that had
slack time. However. if we select operators {or other tasks to run during the slack time of the
C-operator. knowledge about those operators is learned in the context of the C-operator. This
knowledge is independent of the function the C-operator is implementing and can be applicable in
other situations. Thus. when the C-operator applies in the future, it chianges the state according
to its original definition. but it also might make other changes to the state that are not really part
of its original definition. These extra changes might even cause the original definition to fail. This
would mean that the (-operator and the knowledge learned from the sub-operator interfered with
each other.

Changing the function that a C-operator implements can make previousty learned control knowl-
edge incorrect. If the control knowledge that guides operator selection is the same for all situations
then changing the function implemented will work fine. becanse the new function additions to the
C-operator will apply only when the other operator is available for selection. However. in general
control knowledge responds to different situations with dilferent operator selections. Thuas. even
though the (-operator is correctly selected. the anxiliary changes it makes may not be desivable.
This is not a problem for C'ovigaru because the C-operator is always a new aperator that is depen-
dent upon a tie from the smaller operators. Thus new control information has to be learned for
the new operator.

Operator termination has a similar problem. In this method. unlike Covrigaru’s combination
process. the operators being combined are not treated equally. In particular. the sub-operator is
terminated when the C-operator is completed. possibly before the sub-operator has completed.
Unless this non-completion is handled. the fanatical operator application assumption will be vio.
lated. If the terminations only happen at slack time. then we cau use the ve-planning method of
Section 3.1 to recover and complete the sub-operator. However, terminations can ocenr at other
times in Soar and the PSCM places no restrictions on these terminations. Thus, using this method
of combining makes implementing effective functions via operators impossible 1o gnarantee.

This method of combining operators violates too many of our assumptions as to how PSCM




and Soar systems should work without offsetting benefits 1o merit further serions consideration,
We included it in this paper because it is an obvious method for combining operators afforded by
the Soar architecture. and we wanted to describe the problems with it.

5 Discussion

We have introduced a number of kev ideas related to the persistence of objectives. The first is tha
the fanatical completion assumption entails situations in which the persistence of an operator’s
objective exceeds the desired persistence of the operator itself on the goal stack. When an objective’s
persistence exceeds the desired persistence of its operator. we split the operator.™ The split is
accomplished by a dvnamic redefinition of the operator’s termination knowledge which may. of
necessity. be overgeneral. This overgenerality has two consequences: it may prematurely terminate
the operator under inappropriate conditions in the future. and it may cause a significant increase in
the number of operators required to achieve an objective. Both these consequences are ameliorated
somewhat by Soar’s delay of termination until quiescence - if the world reacts within the hounds
of the decision cycle. a split operator effectivelv recombines. Of course the process of splitting
requires a concomitant process for continuing work on the objective at an appropriate time in the
future. Specifically. it requires a potentially difficult context restoration process and consideration
of the indexing involved in invoking the restoration. \lthough we have given some ideas for how
to handle indexing and restoration by taking advantage of the context that is still available durine
the slack time that leads to splitting. this is clearly an area requiring further research.

Neither the persistence of an objective. nor the context restoration process has support from the
Soar architecture at this point in time. However. a refevant proposal has been made. howeser, in
the form of maintaining several complete contexts on the goal stack [Rosenbloom. 1993]. Consider
what multiple contexts would mean for the cvelic toss example. If we lad multiple contexts on
the goal stack. then we could maintain the context of the cvelic toss indefinitely while doing other
processing. When the bean bag got to the hand. the cvelic-toss operator would simply continue.
Thus. it seems as if the cvclic-toss operator would never have to split. and no context restoration
knowledge would be required. Unfortunately. the problem of terminating a cvelic-toss aperator
that will never complete remains. This is the case of tossing the helium balloon. The rermination
knowledge in this case is still likely to be overgeneral. Qnce it has been created. etther the cvelic toss
operator will be lost or some sort of recovery process will have to occur. Thus multiple contexts give
us some architectural support but don’t solve the fundamental problems for splitting and recovery,

Indeed. it may be premature to consider architectural support because the issues ontlined here
have been evoked by considering only a narrow range ol the pertinent phenomena. The examples
given here can be thought of as a mismatch of persistence in the small. Yet il we consider the broad
range of objectives held by an agent that acts over extended periods of time. it seems clear tha
most of those objectives persist long bevond the duration of the individual operators intended to
achieve them. Put another way. it is not the norm that an agent has the opportunity to carey ont a
sequence of operators to achieve an objective with timely response from the external environment.,
Instead. our days are punctuated b the need to organize our resources to compensate for the
delays between when we form an intention to achieve an objective and when the world presents
the opportunity to pursue the next intentionai step. We might think of this as & mismateh of
persistence in the large. Before architectural change can come. we must fiest understand how the

Ryxr . . . . .

We can also create examples where the persistence of an operator’s objective is shorter than the operator’s
persistence, but these cases are’typically not problematic. An cxample problem of this <ort of persistence msmatch,
t« shown in [Ak_vu;vk. 19e2].




notions of splitting and recovery can be spread across the current architectural mechanisms for
persistence in a way that makes some uniform sense for mismatches in the small and in the large.
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